Make your own free website on Tripod.com

Volver al Menú

 

ACTIVIDAD Nº 5: Ondas transversales en una cuerda

 

 

 

Se introduce

  • la longitud de la onda, en el control de edición titulado Longitud de onda
  • la velocidad de propagación, en el control de edición titulado Velocidad de propagación

Se pulsa el botón titulado Empieza

Se observa la propagación de una onda armónica a lo largo del eje X, hacia la derecha. Podemos observar que cualquier punto del medio, en particular el origen o extremo izquierdo de la cuerda, describe un Movimiento Armónico Simple, cuyo periodo podemos medir y comprobar que es igual al cociente entre la longitud de onda y la velocidad de propagación P=l /v.

Pulsando el botón Pausa, podemos congelar el movimiento ondulatorio en un instante dado, y observar la representación de una función periódica, cuyo periodo espacial o longitud de onda, es la distancia existente entre dos picos consecutivos, dos valles, o el doble de la distancia entre dos nodos (puntos de corte de la función con el eje X). Esta distancia es la misma que hemos introducido en el control de edición titulado Longitud de onda.

Para reanudar el movimiento se pulsa en el mismo botón titulado ahora Continua.

Podemos ahora, observar la propagación de la perturbación y en particular, de un pico señalado por un pequeño círculo, y fijarnos en su desplazamiento a lo largo del eje X. Comprobaremos utilizando el botón titulado Paso, que se desplaza una longitud de onda en el periodo de una oscilación l =vP.

Por último, sin cambiar la velocidad de propagación, se modifica la longitud de onda y se aprecia que a mayor longitud de onda, el periodo de las oscilaciones es mayor y la frecuencia menor, y viceversa, l =v/f.